elevation
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Die geomorphographische Karte (GMK10) beruht auf dem nach 10 m generalisierten digitalen Höhenmodel von Niedersachsen (DGM1). Die Ableitung erfolgte auf dem korrigierten und auf 10 m ausgedünnten Raster ohne Aufträge und Abträge (DGM10oAF). Dargestellt werden einfache Reliefformen in Anlehnung an die 5. Auflage der bodenkundliche Kartieranleitung (Ad hoc AG Boden 2005). Die Tiefenbereiche werden ab einer Einzugsgebietsgröße von 40 ha dargestellt. Sie werden nach Einzugsgebietsgröße und einer relativen „Höhe“ (Senkenbereiche im Senkenbereich, Scheitelbereiche im Senkenbereich) untergliedert. Ziel ist es, im Hauptsenkenbereich kleinere Gerinne und relative Hochlagen zu kennzeichnen. Die Hänge werden in vier Gruppen der Neigungsklassen (N 0-1 = eben bis flach, N 2-3 = Hänge mit deutlicher Neigung zur Erosion, aber ackerbaulich nutzbar, N 4 = ackerbaulich nicht mehr nutzbar, N 5-6 = Steilhänge mit deutlicher Neigung zu gravitativen Hangbewegungen) gegliedert. Diese Zusammenfassung erfolgt im Hinblick auf die Verwendung für die BK50 von Niedersachsen. Scheitelbereiche sind Verebnungen in Hochlagen. Sie werden wie die Hänge in zwei Neigungsklassen (N 0-1 und N 2-3) getrennt. Extra ausgewiesen werden gradartige Scheitelbereiche, da diese häufig extrem flache Standorte sind und/oder die lössige Hauptlage fehlt.
-
Höhenmesspunkte beim Dreiecksmoor für den Torfabbau
-
Im Jahr 2019 wurde das Stadtgebiet Braunschweig flächendeckend mit einem Laserscanner vom Flugzeug aus abgetastet. Die Ergebnisse dieses Airborne Laserscannig (ALS) sind klassifizierte Höhenpunkte der Oberfläche mit einer Dichte von mindestens 8 Punkten/m². Die Höhengenauigkeit der Messdaten ist meist deutlich besser als ± 0,15 m. Außerdem liegen noch Daten der Laserscanbefliegungen aus den Jahren 2003 und 2011 mit einer Punktdichte von 1 bis 8 Punkten/m² vor. Laserscandaten werden in verschiedenen Rasterweiten als Datensatz in diversen Datenformaten abgegeben. Auf Wunsch können individuell ausgeprägte Höhendarstellungen, u.a. Höhenlinien, digitales Geländemodell (DGM) und digitales Oberflächenmodell (DOM) als Datensatz oder Karte angeboten werden.
-
Das Digitale Oberflächenmodell (DOM) ist ein Folgeprodukt aus den 3D-Messdaten. Es beschreibt die Erdoberfläche samt allen darauf befindlichen, nicht temporären Objekten durch die räumlichen Koordinaten einer repräsentativen Menge von Höhenpunkten zum Erfassungszeitraum. Höheninformationen werden maßstabsunabhängig und datenverarbeitungsgerecht vorgehalten. Auf Grundlage der seit 2019 niedersachsenweit verfügbaren Laserscan-Punktwolken aus Airborne Laserscaning (ALS), die eine geometrische Auflösung von mindestens 4 Punkten/m² aufweisen, wird ein hochgenaues DOM in 1 x 1 km Kacheln bereitgestellt. Die Rasterweite beträgt 1m (DOM1) und die Rasterelementposition liegt im Zentrum auf 0,5 m Positionen (= Pixelmitte). Die Höhengenauigkeit des DOM1 beträgt für feste Oberflächen ohne Bewuchs ≤ 30 cm. Diese wurden über eine Delaunay-Triangulation aus der klassifizierten ALS-Punktwolke bestimmt. Das so entstandene Cloud-Optimized GeoTIFF (COG) ist in 32 Bit mit Float-Werten codiert und wurde über das Verfahren LZW komprimiert. Leere Pixel (NoData) enthalten den Wert -9999. Weitere Informationen finden Sie unter dem Reiter Downloads und Links.
-
Die 3D-Messdaten bilden als primäre Höhendaten die topographische Situation durch unregelmäßig verteilte Messpunkte sowie Linien und flächenhafte Strukturen ab. Dies schließt sowohl die mit der Erdoberfläche dauerhaft verbundenen Objekte als auch temporäre, zum Erfassungszeitpunkt vorhandene Gegenstände ein. Bestandteile der 3D-Messdaten sind die Laserscan-Punktwolke aus Airborne Laserscanning (ALS), die Matching-Punktwolke aus Dense Image Matching (DIM) und die 3D-Strukturinformationen. Letztere befinden sich derzeit noch im Aufbau und beinhalten Geländebruchkanten und markante Geländepunkte. Die 3D-Messdaten sind lagemäßig im ETRS89/UTM-Koordinatensystem bestimmt, die Höhe bezieht sich auf das DHHN2016 mit Normalhöhen-Null (NHN). Die Laserscan-Punktwolke hat eine Punktdichte von ≥ 4 Punkten/m² (Last- / Only-Return), eine Lagegenauigkeit von ≤ 0,30 m und eine Höhengenauigkeit von ≤ 0,15 m. Sie liegt als klassifizierte Punktwolke mit den Klassen Bodenpunkte, Gewässerpunkte, Unterbodenpunkte (z. B. Ein-/Auffahrten, Kellerschüsse und Schwimmbecken), Nicht-Bodenpunkte (z. B. Gebäude, Vegetation und temporäre Aufschüttungen) und sonstige Punkte (DGM- noch DOM-irrelevante Punkte wie z. B. Stromleitungen, Verkehrsmittel, Container und Vögel) gemäß Produkt- und Qualitätsstandard 3D-Messdaten der Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV) vor. Die Gesamtpunktdichte der Matching-Punktwolke variiert mit der Pixelauflösung der originären, orientierten Luftbilder. Die Lagegenauigkeit liegt bei der DIM-Punktwolke bei ≤ 0,40 m und die Höhengenauigkeit bei ≤ 0,60 m, wobei die realen Unsicherheiten meist geringer ausfallen. Die DIM-Punktwolke enthält keinerlei Klasseninformationen. Die 3D-Messdaten, insbesondere ALS-Punktwolken, bilden die Grundlage für die Ableitung des Digitalen Geländemodells (DGM) und des Digitalen Oberflächenmodells (DOM), die sich in ihrer Datenmodellierung durch ein gleichförmiges Raster an Höhenpunkten auszeichnen. Zudem dienen die 3D-Messdaten als Datengrundlage für die Ableitung der 3D-Gebäudemodelle.
-
Der Scheitelbereichsindex stellt einen kombinierten Reliefparameter aus relativer Hangposition und Hangneigung dar. Er dient in erster Linie zur Ermittlung von Scheitelbereichen (relativ flachgründige Standorte). Als Nebeneffekt zeigen mittlere Werte des Scheitelbereichsindexes meist Hänge bzw. Verflachungen (z.B. Terrassen, Geestplatten) anMittlere bis hohe Werte weisen auf Talböden hin und sehr hohe Werte auf steile Hänge in relativer Tiefposition (z.B. Terrassenböschungen und steile Kerbtäler). Er wird mit folgender Formel berechnet: Scheitelbereichsindex = relHP + N wobei: relHP = Relative Hangposition (invertiert) N = Hangneigung (Neigungen > 60° -> = 60°, Exponent = 0.4, normiert auf 0.0 bis 1.0) Durch die Einbeziehung der Hangneigung wird der Reliefparameter relative Hangposition dahingehend modifiziert, dass Verflachungen in relativer Toplage des Reliefs sehr geringe Werte aufweisen und es am Übergang zu den Hängen zu einem meist abrupten Anstieg des Scheitelbereichsindexes kommt. Definition und Berechnungsverfahren: KÖTHE (2007), realisiert durch SAGA-Modul der scilands GmbH und SAGA-Modul "Grid Calculator".
-
Der komplexe Reliefparameter Einzugsgebietsgröße beschreibt die Größe des Einzugsgebietes einer Rasterzelle in der Tiefenlinie. Die Berechnung erfolgte unter Verwendung eines Multiple-Flow-Direction-Algorithmus nach FREEMAN (1991). Die Einzugsgebietsgröße der Tiefenlinien wurde bestimmt, um einen Anhalt zur Trennung der Talformen mit fluvialer oder kolluvialer (Abschwemmmassen) Füllung zu erhalten. Dargestellt werden Tiefenlinien mit einem Einzugsgebiet größer 40 ha. Die hier vorliegende Auswertung beruht auf dem nach 10 m generalisierten digitalen Höhenmodel von Niedersachsen (DGM1). FREEMAN, T.G. (1991): Calculating catchment area with divergent flow based on a regular grid. -Computers and Geoscience, Bd. 17, 3: 413-422.
-
Der Terrain Classification Index = (TCIlow) ist ein dimensionsloser Index im Wertebereich von 0-2. Er überhöht geringste Höhendifferenzen, insbesondere in Tiefenbereichen. Auch bei geringsten Reliefunterschieden werden Gerinne und flache Senken erkennbar. In der Nähe von anthropogenen Bauwerken wie Deichen, Dämmen oder Halden können Reste oder Artefakte die Werte verfälschen. Der Reliefklassifikationsindex TCIlow beruht auf dem nach 10m generalisierten digitalen Höhenmodel von Niedersachsen (DGM1) und wird aus den komplexen Reliefparametern Höhe über Tiefenlinie, Einzugsgebietsgröße und modifizierten Bodenfeuchteindex berechnet (BOCK, BÖHNER, CONRAD, KÖTHE & RINGELER (2007)). BOCK, M., BÖHNER, J., CONRAD, O., KÖTHE, R. & RINGELER, A. (2007): Methods for creating Functional Soil Databases and applying Digital Soil Mapping with SAGA GIS. - In: Hengl, T. et al. (Eds.) Status and prospect of soil information in south-eastern Europe: soil databases, projects and applications. - EUR 22646 EN, 149-163, Scientific and Technical Research series, Office for Official Publications of the European Communities; Luxemburg.
-
Das Digitale Geländemodell 1 : 5 000 des Landesamtes für Bergbau, Energie und Geologie ((DGM5LBEG) ist die korrigierte und veränderte Version des Digitalen Geländemodells 1 : 5 000 (DGM5) des Landesamts für Geoinformation und Landentwicklung Niedersachsen (LGLN). Mit der Korrektur wurden die Teilkacheln zusammengefügt, Blattschnittprobleme und verschiedene Fehler wurden eliminiert und die Daten wurden auf ein Bezugssystem (Gauß-Krüger 3. Meridian) projiziert. Die Arbeitsschritte sind umfangreich dokumentiert. Die Rasterdaten liegen im Ergebnis blattschnittfrei und flächendeckend in einem Datensatz für Niedersachsen vor. Das DGM5LBEG repräsentiert die Geländeoberfläche und somit das Relief der Erde durch Höhenpunkte, die als regelmäßiges Gitter angeordnet sind. Es hat eine Rasterweite von 12,5 m.
-
Das Amtliche Festpunktinformationssystem (AFIS) weist die Daten des Landesbezugssystems nach. AFIS wurde als Bestandteil des AdV-Konzepts AFIS-ALKIS-ATKIS (AAA) zur integrierten Modellierung der Geoinformationen des amtlichen Vermessungswesens implementiert. Es umfasst die in Niedersachsen bisher nachgewiesenen Daten zu den Lagefestpunkten (LFP), den Höhenfestpunkten (HFP), den Schwerefestpunkten (SFP) und den SAPOS®-Referenzstationspunkten (RSP).