Höhenangaben
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Dieser Datensatz (SHP) beinhaltet Höhenlinien im Abstand von 2,5 Metern für das Gebiet der Stadt Braunschweig. Höhenangaben und Linienart/ -stil sind als Attribute integriert. Die Höhenlinien sind aus einem Laserscan-DGM des Jahres 2011 abgeleitet. Die Geodaten unterliegen grundsätzlich dem Urheberrecht und werden von der Stadt Braunschweig als Rechteinhaber unter der bundesweit verwendeten "Datenlizenz Deutschland - Namensnennung - Version 2.0" bereitgestellt. Es sind sowohl private als auch kommerzielle Nutzungen erlaubt.
-
Höhenmesspunkte beim Dreiecksmoor für den Torfabbau
-
Das Digitale Geländemodell - Höhen ohne anthropogene Reliefformen des Landesamtes für Bergbau, Energie und Geologie (sDGM10LBEG_HOAR) ist eine Weiterbearbeitung des Digitalen Geländemodell des Landesamtes für Bergbau, Energie und Geologie (sDGM10LBEG), in der zusätzlich anthropogene Reliefformen (z.B. Verkehrsdämme, Einschnitte) eliminiert sowie Abfluss- und geomorphographischen Parametern berechnet wurden, wie z.B. Neigung in Prozent. Die Hangneigung beschreibt den Winkel zwischen Geländeoberfläche und der ebenen Horitontalen. Definition und Berechnung: SAGA-Standard. Einheit: [%]. ZEVENBERGEN, L. W. & THORNE, C. R. (1987): Quantitative analysis of land surface topography. In: Earth Surface Process and Landforms, 12, S. 47-56.
-
Die Stadt Osnabrück – Fachdienst Geodaten - hält für planerische und bauliche Aufgaben ein eigenes Höhenfestpunktfeld vor, das durch Netzverdichtung im Anschluss an das amtliche „Deutsche Haupthöhennetz“ entstanden ist. Die ursprünglichen Normal-Null-Höhen (NN-Höhen) wurden mittlerweile in das amtliche Höhenbezugssystem Höhen über Normalhöhennull (NHN-Höhen) überführt. Auszüge aus dem Höhenverzeichnis einschließlich einer Kartenübersicht können digital (im PDF- oder TIFF-Format) oder analog als Druckausgabe bereitgestellt werden.
-
Das Digitale Geländemodell 1 : 5 000 des Landesamtes für Bergbau, Energie und Geologie ((DGM5LBEG) ist die korrigierte und veränderte Version des Digitalen Geländemodells 1 : 5 000 (DGM5) des Landesamts für Geoinformation und Landentwicklung Niedersachsen (LGLN). Mit der Korrektur wurden die Teilkacheln zusammengefügt, Blattschnittprobleme und verschiedene Fehler wurden eliminiert und die Daten wurden auf ein Bezugssystem (Gauß-Krüger 3. Meridian) projiziert. Die Arbeitsschritte sind umfangreich dokumentiert. Die Rasterdaten liegen im Ergebnis blattschnittfrei und flächendeckend in einem Datensatz für Niedersachsen vor. Das DGM5LBEG repräsentiert die Geländeoberfläche und somit das Relief der Erde durch Höhenpunkte, die als regelmäßiges Gitter angeordnet sind. Es hat eine Rasterweite von 12,5 m.
-
Die 3D-Messdaten bilden als primäre Höhendaten die topographische Situation durch unregelmäßig verteilte Messpunkte sowie Linien und flächenhafte Strukturen ab. Dies schließt sowohl die mit der Erdoberfläche dauerhaft verbundenen Objekte als auch temporäre, zum Erfassungszeitpunkt vorhandene Gegenstände ein. Bestandteile der 3D-Messdaten sind die Laserscan-Punktwolke aus Airborne Laserscanning (ALS), die Matching-Punktwolke aus Dense Image Matching (DIM) und die 3D-Strukturinformationen. Letztere befinden sich derzeit noch im Aufbau und beinhalten Geländebruchkanten und markante Geländepunkte. Die 3D-Messdaten sind lagemäßig im ETRS89/UTM-Koordinatensystem bestimmt, die Höhe bezieht sich auf das DHHN2016 mit Normalhöhen-Null (NHN). Die Laserscan-Punktwolke hat eine Punktdichte von ≥ 4 Punkten/m² (Last- / Only-Return), eine Lagegenauigkeit von ≤ 0,30 m und eine Höhengenauigkeit von ≤ 0,15 m. Sie liegt als klassifizierte Punktwolke mit den Klassen Bodenpunkte, Gewässerpunkte, Unterbodenpunkte (z. B. Ein-/Auffahrten, Kellerschüsse und Schwimmbecken), Nicht-Bodenpunkte (z. B. Gebäude, Vegetation und temporäre Aufschüttungen) und sonstige Punkte (DGM- noch DOM-irrelevante Punkte wie z. B. Stromleitungen, Verkehrsmittel, Container und Vögel) gemäß Produkt- und Qualitätsstandard 3D-Messdaten der Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV) vor. Die Gesamtpunktdichte der Matching-Punktwolke variiert mit der Pixelauflösung der originären, orientierten Luftbilder. Die Lagegenauigkeit liegt bei der DIM-Punktwolke bei ≤ 0,40 m und die Höhengenauigkeit bei ≤ 0,60 m, wobei die realen Unsicherheiten meist geringer ausfallen. Die DIM-Punktwolke enthält keinerlei Klasseninformationen. Die 3D-Messdaten, insbesondere ALS-Punktwolken, bilden die Grundlage für die Ableitung des Digitalen Geländemodells (DGM) und des Digitalen Oberflächenmodells (DOM), die sich in ihrer Datenmodellierung durch ein gleichförmiges Raster an Höhenpunkten auszeichnen. Zudem dienen die 3D-Messdaten als Datengrundlage für die Ableitung der 3D-Gebäudemodelle.
-
Die geomorphographische Karte (GMK10) beruht auf dem nach 10 m generalisierten digitalen Höhenmodel von Niedersachsen (DGM1). Die Ableitung erfolgte auf dem korrigierten und auf 10 m ausgedünnten Raster ohne Aufträge und Abträge (DGM10oAF). Dargestellt werden einfache Reliefformen in Anlehnung an die 5. Auflage der bodenkundliche Kartieranleitung (Ad hoc AG Boden 2005). Die Tiefenbereiche werden ab einer Einzugsgebietsgröße von 40 ha dargestellt. Sie werden nach Einzugsgebietsgröße und einer relativen „Höhe“ (Senkenbereiche im Senkenbereich, Scheitelbereiche im Senkenbereich) untergliedert. Ziel ist es, im Hauptsenkenbereich kleinere Gerinne und relative Hochlagen zu kennzeichnen. Die Hänge werden in vier Gruppen der Neigungsklassen (N 0-1 = eben bis flach, N 2-3 = Hänge mit deutlicher Neigung zur Erosion, aber ackerbaulich nutzbar, N 4 = ackerbaulich nicht mehr nutzbar, N 5-6 = Steilhänge mit deutlicher Neigung zu gravitativen Hangbewegungen) gegliedert. Diese Zusammenfassung erfolgt im Hinblick auf die Verwendung für die BK50 von Niedersachsen. Scheitelbereiche sind Verebnungen in Hochlagen. Sie werden wie die Hänge in zwei Neigungsklassen (N 0-1 und N 2-3) getrennt. Extra ausgewiesen werden gradartige Scheitelbereiche, da diese häufig extrem flache Standorte sind und/oder die lössige Hauptlage fehlt.
-
Der hier vorliegende Sedimentbilanzindex geht auf das von Möller et al. (2008) beschriebene Ableitungsverfahren zurück und ist eine Weiterentwicklung der von BÖHNER & SELIGE (2006) beschriebenen Methode. Grundlage hierfür ist die Kombination verschiedener Reliefparameter, wobei Parameter des Bodens (Bodenart), der Niederschläge oder der Landbedeckung in der Anwendung unberücksichtigt bleiben. Die Berechnung geht vom Grundgedanken des LS-Faktors des USLE (WISCHMEIER & SMITH (1978)) aus. Die Hangneigung wird über ein Äquivalent des Sedimenttransportindex (STIS) integriert. Die Hanglänge fließt über Exponentenwerte für flache Hänge ein (SCHWERTMANN et al. (1990)). Der Sedimentbilanzindex beschreibt somit ein relatives Potential des Reliefs zum Abtrag (Index -4 bis <1) bzw. zur Akkumulation (Index >1 bis 4,5) von Bodenmaterial. Weiterentwicklungen werden bei MÖLLER et al. (2008) beschrieben. MÖLLER, M., VOLK, M., FRIEDRICH, K. & LYMBURNER, L. (2008): Placing soil-genesis and transport processes into a landscape context: A multiscale terrain-analysis approach. Journal of Plant Nutrition and Soil Science 171 (3), 419-430. BOEHNER, J. & SELIGE, T. (2006): Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation. In: Boehner, J., McCloy, K.R., Strobl, J.: SAGA - Analysis and Modelling Applications, Goettinger Geographische Abhandlungen, Vol.115, p.13-27. SCHWERTMANN, U., VOGL, W. & KAINZ, M. (1990): Bodenabtrag durch Wasser – Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. – 2. Aufl.: Stuttgart, 64 pp. WISCHMEIER, W.H. & SMITH, D.D. (1978): Predicting rainfall erosion losses – A guide to conversation planning. – Agriculture Handbook No. 537: US Department of Agriculture, Washington DC.
-
Der Scheitelbereichsindex stellt einen kombinierten Reliefparameter aus relativer Hangposition und Hangneigung dar. Er dient in erster Linie zur Ermittlung von Scheitelbereichen (relativ flachgründige Standorte). Als Nebeneffekt zeigen mittlere Werte des Scheitelbereichsindexes meist Hänge bzw. Verflachungen (z.B. Terrassen, Geestplatten) anMittlere bis hohe Werte weisen auf Talböden hin und sehr hohe Werte auf steile Hänge in relativer Tiefposition (z.B. Terrassenböschungen und steile Kerbtäler). Er wird mit folgender Formel berechnet: Scheitelbereichsindex = relHP + N wobei: relHP = Relative Hangposition (invertiert) N = Hangneigung (Neigungen > 60° -> = 60°, Exponent = 0.4, normiert auf 0.0 bis 1.0) Durch die Einbeziehung der Hangneigung wird der Reliefparameter relative Hangposition dahingehend modifiziert, dass Verflachungen in relativer Toplage des Reliefs sehr geringe Werte aufweisen und es am Übergang zu den Hängen zu einem meist abrupten Anstieg des Scheitelbereichsindexes kommt. Definition und Berechnungsverfahren: KÖTHE (2007), realisiert durch SAGA-Modul der scilands GmbH und SAGA-Modul "Grid Calculator".
-
Der Terrain Classification Index = (TCIlow) ist ein dimensionsloser Index im Wertebereich von 0-2. Er überhöht geringste Höhendifferenzen, insbesondere in Tiefenbereichen. Auch bei geringsten Reliefunterschieden werden Gerinne und flache Senken erkennbar. In der Nähe von anthropogenen Bauwerken wie Deichen, Dämmen oder Halden können Reste oder Artefakte die Werte verfälschen. Der Reliefklassifikationsindex TCIlow beruht auf dem nach 10m generalisierten digitalen Höhenmodel von Niedersachsen (DGM1) und wird aus den komplexen Reliefparametern Höhe über Tiefenlinie, Einzugsgebietsgröße und modifizierten Bodenfeuchteindex berechnet (BOCK, BÖHNER, CONRAD, KÖTHE & RINGELER (2007)). BOCK, M., BÖHNER, J., CONRAD, O., KÖTHE, R. & RINGELER, A. (2007): Methods for creating Functional Soil Databases and applying Digital Soil Mapping with SAGA GIS. - In: Hengl, T. et al. (Eds.) Status and prospect of soil information in south-eastern Europe: soil databases, projects and applications. - EUR 22646 EN, 149-163, Scientific and Technical Research series, Office for Official Publications of the European Communities; Luxemburg.