Contact for the resource

Landesamt für Bergbau, Energie und Geologie (LBEG)

1118 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Service types
Scale
Resolution
From 1 - 10 / 1118
  • Categories  

    Das Denitrifikationspotenzial beschreibt die Fähigkeit des Bodens durch mikrobielle Umsetzungen und unter anaeroben Bedingungen einen Teil des Nitrats wieder in Luftstickstoff (z.T. Lachgas) umzusetzen. Voraussetzungen für den Nitratabbau sind die Präsenz von Nitrat, die Abwesenheit von Sauerstoff und die Anwesenheit von oxidierbarer organischer Materie. Das Denitrifikationspotenzial wird auf Grundlage der niedersachsenweiten Bodenkarte (BK50, Gehrt et al 2021) abgeleitet und gilt bis zu einer Tiefe von zwei Metern. Die Methodik ist im Geobericht 19 (Bug et al. 2020) dargestellt. Jedem Bodentyp ist in Abhängigkeit vom Grund- bzw. Stauwassereinfluss eine Denitrifikationsstufe mit einer mittleren, jährlichen Rate zugeordnet. Insgesamt gibt es fünf Denitrifikationsstufen, die durch mittlere Denitrifikationsraten von 5, 20, 40, 60 und 100 kg N/ha*a (in torfhaltigen Substraten bei hohem Grundwasserstand 150 kg N/ha*a) gekennzeichnet sind. Die niedrigsten Denitrifikationsraten weisen gering humose Standorte auf, bei denen ganzjährig eine Wassersättigung des Bodenkörpers ausgeschlossen wird. Mit Zunahme des Humusgehalts oder durch das Auftreten von temporärer Nässe bei Grund- oder Stauwassereinfluss steigt das Denitrifikationspotenzial der Böden. Die zweite Denitrifikationsstufe steht für eine mittlere Denitrifikationsrate von 20 kg N/ha*a. Grundsätzlich ist mit den höchsten Denitrifikationsraten zu rechnen, sobald Grundwasser in humus- oder schwefelhaltigen Bodenschichten steht. Bei der Denitrifikationsstufe 5 (>> 150 kg N/ha*a) kann die Denitrifikationsrate bis 3 000 kg N/ha*a betragen. Solche Raten sind vor allem in Niedermooren und humusreichen Böden zu finden, bei denen die Grundwasseroberfläche ganzjährig bei = 6 dm u. GOK im Torfkörper ansteht. Da bei der Denitrifikation organische Substanz in wassergesättigten Bodenschichten abgebaut wird, ist vor allem für mineralische Horizonte anzunehmen, dass die Denitrifikationsrate im Laufe der Jahrzehnte und Jahrhunderte abnimmt. Auch Grundwasserabsenkungen können die Denitrifikationsleistung in der Bodenzone eines Standortes deutlich herabsetzen (Wienhaus et al., 2008). Referenzen: BUG, J., HEUMANN, S., MÜLLER, U. & WALDECK, A. (2020): Auswertungsmethoden im Bodenschutz - Dokumentation zur Methodenbank des Niedersächsischen Bodeninformationssystems (NIBIS®). – GeoBerichte 19: 383 S. Hannover: LBEG GEHRT, E., BENNE, I., EVERTSBUSCH, S., KRÜGER, K. & LANGNER, S. (2021): Erläuterung zur BK 50 von Niedersachsen. – GeoBerichte 40: 282 S., 125 Abb., 100 Tab.; Hannover (LBEG). WIENHAUS, S.,HÖPER, H., EISELE, M.,MEESENBURG, H. & SCHÄFER,W. (2008): Nutzung bodenkundlich- hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasserschutz - Ergebnisse eines Modellprojektes (NOLIMP) zur Umsetzung der EG-Wasserrahmenrichtlinie. – GeoBerichte 9: 56 S., 13 Abb., 5 Tab., Anh.; Hannover (LBEG).

  • Categories  

    Das Denitrifikationspotenzial beschreibt die Fähigkeit des Bodens durch mikrobielle Umsetzungen und unter anaeroben Bedingungen einen Teil des Nitrats wieder in Luftstickstoff (z.T. Lachgas) umzusetzen. Voraussetzungen für den Nitratabbau sind die Präsenz von Nitrat, die Abwesenheit von Sauerstoff und die Anwesenheit von oxidierbarer organischer Materie. Das Denitrifikationspotenzial wird auf Grundlage der niedersachsenweiten Bodenkarte (BK50, Gehrt et al 2021) abgeleitet und gilt bis zu einer Tiefe von zwei Metern. Die Methodik ist im Geobericht 19 (Bug et al. 2020) dargestellt. Jedem Bodentyp ist in Abhängigkeit vom Grund- bzw. Stauwassereinfluss eine Denitrifikationsstufe mit einer mittleren, jährlichen Rate zugeordnet. Insgesamt gibt es fünf Denitrifikationsstufen, die durch mittlere Denitrifikationsraten von 5, 20, 40, 60 und 100 kg N/ha*a (in torfhaltigen Substraten bei hohem Grundwasserstand 150 kg N/ha*a) gekennzeichnet sind. Die niedrigsten Denitrifikationsraten weisen gering humose Standorte auf, bei denen ganzjährig eine Wassersättigung des Bodenkörpers ausgeschlossen wird. Mit Zunahme des Humusgehalts oder durch das Auftreten von temporärer Nässe bei Grund- oder Stauwassereinfluss steigt das Denitrifikationspotenzial der Böden. Die zweite Denitrifikationsstufe steht für eine mittlere Denitrifikationsrate von 20 kg N/ha*a. Grundsätzlich ist mit den höchsten Denitrifikationsraten zu rechnen, sobald Grundwasser in humus- oder schwefelhaltigen Bodenschichten steht. Bei der Denitrifikationsstufe 5 (>> 150 kg N/ha*a) kann die Denitrifikationsrate bis 3 000 kg N/ha*a betragen. Solche Raten sind vor allem in Niedermooren und humusreichen Böden zu finden, bei denen die Grundwasseroberfläche ganzjährig bei = 6 dm u. GOK im Torfkörper ansteht. Da bei der Denitrifikation organische Substanz in wassergesättigten Bodenschichten abgebaut wird, ist vor allem für mineralische Horizonte anzunehmen, dass die Denitrifikationsrate im Laufe der Jahrzehnte und Jahrhunderte abnimmt. Auch Grundwasserabsenkungen können die Denitrifikationsleistung in der Bodenzone eines Standortes deutlich herabsetzen (Wienhaus et al., 2008). Referenzen: BUG, J., HEUMANN, S., MÜLLER, U. & WALDECK, A. (2020): Auswertungsmethoden im Bodenschutz - Dokumentation zur Methodenbank des Niedersächsischen Bodeninformationssystems (NIBIS®). – GeoBerichte 19: 383 S. Hannover: LBEG GEHRT, E., BENNE, I., EVERTSBUSCH, S., KRÜGER, K. & LANGNER, S. (2021): Erläuterung zur BK 50 von Niedersachsen. – GeoBerichte 40: 282 S., 125 Abb., 100 Tab.; Hannover (LBEG). WIENHAUS, S.,HÖPER, H., EISELE, M.,MEESENBURG, H. & SCHÄFER,W. (2008): Nutzung bodenkundlich- hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasserschutz - Ergebnisse eines Modellprojektes (NOLIMP) zur Umsetzung der EG-Wasserrahmenrichtlinie. – GeoBerichte 9: 56 S., 13 Abb., 5 Tab., Anh.; Hannover (LBEG).

  • Categories  

    Die Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Grundwasserbeschaffenheit: Sulfatgehalt zeigt die Auswertung einer repräsentativen Auswahl von Sulfatkonzentrationen aus der Labordatenbank des LBEG. Die über einen Zeitraum von 1967 bis 2000 erhobenen Daten wurden zweifach gemittelt. Bei Grundwasser-Messstellen mit Mehrfachanalysen wurden Mittelwerte der jeweils vorliegenden Untersuchungsergebnisse gebildet. Zusätzlich wurden die Werte aller Probenahmestellen in einem Radius von 2000 m einer weiteren Mittelwertbildung unterzogen. Die Einteilung der Klassen erfolgt unter Berücksichtigung des Geringfügigkeitsschwellenwertes (GFS) bzw. des Grenzwertes der Trinkwasserverordnung (TVO) von 240 mg/l sowie des TVO-Wertes von 500 mg/l bei geogen bedingter Überschreitung. Erhöhte Konzentrationen, die eindeutig auf punktförmige anthropogene Einträge (z.B. Altdeponien) zurückzuführen sind, werden im Rahmen dieser Übersichtskarte nicht wiedergegeben. Die Sulfatgehalte sind in Tiefenstufen ohne Bezug zur lokalen hydrogeologischen Situation dargestellt. Die Stabdiagramme im rechts gezeigten Beispiel spiegeln Ergebnisse für die Tiefenstufen bis 20 Meter, über 20 bis 50 Meter, über 50 bis 100 Meter und über 100 bis 200 Meter wieder. Ein Vergleich von Werten ist daher ohne Berücksichtigung der jeweiligen hydrogeologischen Situation (z.B. hydrogeologischer Stockwerksbau) ebenso wie die Heranziehung der Daten für Detailuntersuchungen nicht zulässig. Sehr hohe Sulfatkonzentrationen sind z. T. auf geogene Einflüsse zurückzuführen: Die höchsten Konzentrationen für Sulfat finden sich in Niedersachsen im Bereich der Küstenversalzung (Ostfriesische Küste und nördlich des Jadebusens). Ebenfalls sehr hohe geogene Sulfatkonzentrationen gibt es im Verbreitungsgebiet gipshaltiger Gesteine (Oberer Buntsandstein, Mittlerer Muschelkalk, Mittlerer Keuper, Zechstein), wo im Grundwasser Sulfatkonzentrationen von mehr als 1000 mg/l erreicht werden. Die Oxidation von Sulfiden (z.B. Pyrit) führt ebenfalls zu hohen Sulfatgehalten. Im nördlichen Bereich von Hannover werden Konzentrationen von 100 – 400 mg/l erreicht. Eine Ursache dafür ist die Oxidation von Pyritmineralen aus Gesteinen der Kreidezeit. Erhöhte Eisengehalte und niedrige pH-Werte sind weitere Folgen dieser Reaktion. Sehr niedrige Sulfatgehalte mit wesentlich weniger als 10 mg/l sind meist auf Sulfatreduktion zurückzuführen, wobei bei dieser Reaktion häufig organisches Material im Gestein Oxidationsprozessen unterliegt. Das Grundwasser in den holozänen Ablagerungen östlich und südöstlich des Jadebusens ist zu einem großen Teil durch Sulfatreduktion verändert.

  • Categories  

    Die Lage der Grundwasseroberfläche, bzw. der Grundwasserdruckfläche bei gespanntem Grundwasser, wird üblicherweise durch Grundwasserhöhengleichen (Isohypsen) dargestellt. Das Kartenthema zeigt die Grundwasseroberfläche für alle Lockergesteinsgebiete Niedersachsens. In den Festgesteinsgebieten des südlichen Niedersachsens ist diese Art der Darstellung nicht möglich, da ein flächenhaft verbreiteter, räumlich zusammenhängender Grundwasserkörper dort meist nicht existiert. Das Grundwasser bewegt sich im Festgestein in Kluft- und Störungssystemen oder Karsthohlräumen. Obwohl die Grundwasservorkommen im Festgestein, z.B. in Karstgebieten, durchaus beachtlich sein können, sind sie mit Grundwassergleichen nicht sinnvoll darstellbar. Diese Bereiche sind auf der Karte als Festgestein gekennzeichnet, die vermutete Grundwasserfließrichtung wird durch Pfeile angezeigt. Zur Konstruktion der Grundwassergleichen werden im Allgemeinen zeitgleich durchgeführte Grundwasserstandsmessungen an allen Messstellen zugrunde gelegt. Stichtagsmessungen liegen zwar für größere Gebietseinheiten vor, nicht aber flächendeckend für ganz Niedersachsen. Daher mussten für den vorliegenden Grundwassergleichenplan Grundwasserstandsmessungen zu verschiedenen Zeiten herangezogen werden, die auf mittlere Wasserstandsverhältnisse umgerechnet wurden. In die Auswertung wurden alle Messstellen einbezogen, die im Rahmen des gewässerkundlichen Landesdienstes beobachtet werden. Neben diesen Messstellen im Landesdienst gibt es noch viele weitere Messstellen, die im Rahmen von Wasserwerksbetrieb, Beweissicherungsverfahren und Sonderprogrammen beobachtet werden und für die vorliegende Karte ebenfalls herangezogen wurden. Um die Liniendarstellung der Grundwassergleichen anschaulicher zu gestalten, sind die dazwischenliegenden Flächen farbig hinterlegt. Die Farbflächen geben die Lage der Grundwasseroberfläche bzw. der Grundwasserdruckfläche in m zu NN an. Der Grundwassergleichenplan ist geeignet, großräumig die Strömungsrichtungen und die Potenzialgefälleverhältnisse des Grundwassers in den Lockergesteinsgebieten zu verdeutlichen.

  • Categories  

    Die Lage der Grundwasseroberfläche, bzw. der Grundwasserdruckfläche bei gespanntem Grundwasser, wird üblicherweise durch Grundwassergleichen (Isohypsen) dargestellt. Das Kartenthema zeigt die Grundwasseroberfläche des ersten großräumig verbreiteten Grundwasserstockwerks für alle Lockergesteinsgebiete Niedersachsens. Dichteunterschiede wurden nicht berücksichtigt. In den Festgesteinsgebieten des südlichen Niedersachsens ist diese Art der Darstellung nicht praktikabel, da ein flächenhaft verbreiteter, räumlich zusammenhängender Grundwasserkörper dort meist nicht existiert. Das Grundwasser bewegt sich im Festgestein in Kluft- und Störungssystemen oder Karsthohlräumen. Obwohl die Grundwasservorkommen im Festgestein, z.B. in Karstgebieten, durchaus beachtlich sein können, sind sie mit Grundwassergleichen in diesem Maßstab nicht sinnvoll darstellbar. Diese Bereiche sind auf der Karte als Festgestein gekennzeichnet. Im niedersächsischen Küstengebiet werden die Grundwasserstände durch die tidebedingt wechselnde Höhe des Meerwasserspiegels und durch Maßnahmen der künstlichen Entwässerung (Schöpfwerke, Siele) stark beeinflusst. Im Bereich von Schöpfwerken und Unterschöpfwerken kann die Grundwasserfließrichtung von der Küste weg in Richtung Binnenland verlaufen. In unmittelbarer Nähe zur Küstenlinie wechselt die Grundwasserfließrichtung je nach Stand der Tide. Die Grundwasserhöhengleichen werden hier nur stark generalisiert dargestellt. Zur Konstruktion der Grundwassergleichen werden im Allgemeinen zeitgleich durchgeführte Grundwasserstandsmessungen an allen Messstellen zugrunde gelegt (Stichtagsmessungen). Die vorliegende Darstellung beruht auf Stichtagsmessungen vom Januar 1993 und stellt einen mittleren Grundwasserstand der Zeitreihe von 1990 – 2000 dar. Den Stichtagsmessungen der Kartenserie liegen Grundwasserstandsdaten des Gewässerkundlichen Landesdienstes zu Grunde, die mit Erlaubnis des Niedersächsischen Landesbetriebes für Wasserwirtschaft, Küsten- und Naturschutz verwendet wurden. Zusätzlich dazu wurden teilweise Daten von Wasserversorgungsunternehmen zur Verfügung gestellt. Da das Raster aus Stichtagsmessungen keine ausreichende Belegdichte aufweist, wurde der Datenbestand, soweit es fachlich vertretbar schien, um Grundwasserstandsmessungen aus anderen Zeiträumen ergänzt. Diese Daten stammen aus der Bohrdatenbank oder aus Archivunterlagen des LBEG. In Gebieten mit hohen Schwankungen des Grundwasserspiegels wurde diese Ergänzung nicht vorgenommen. Im Bereich von Stauchmoränen weisen die Grundwasserabstände, bedingt durch den sehr heterogenen geologischen Aufbau dieser Gebiete, eine große Variabilität auf. Hier können die Grundwassergleichen nur die großräumige Strömungsrichtung darstellen. In Gebieten mit sehr geringer Belegpunktdichte können die tatsächlichen Wasserstände vor Ort von der Kartendarstellung unter Umständen abweichen. Um die Liniendarstellung der Grundwassergleichen anschaulicher zu gestalten, sind die von ihnen eingeschlossenen Flächen farbig hinterlegt. Die Farbflächen geben die Lage der Grundwasseroberfläche, bzw. der Grundwasserdruckfläche in Intervallen zu jeweils 2,5 m in Metern zu NN an. Der Grundwassergleichenplan ist geeignet, großräumig die Strömungsrichtungen und die Potenzial-gefälleverhältnisse des Grundwassers in den Lockergesteinsgebieten zu verdeutlichen. Für detaillierte Aussagen sind unter Umständen Karten mit einer höheren Belegdichte an Stichtagsmessungen erforderlich.

  • Categories  

    Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat Oktober im 30-jährigen Zeitraum 1981-2010. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.

  • Categories  

    Die Karte zeigt die mögliche Grundwasserversalzung im Maßstab 1:200 000. Süßwassererfüllte Grundwasserleiter sind in Niedersachsen nur bis zu einer Tiefe von maximal 300 m anzutreffen. Ihr Vorkommen ist auf die Bereiche beschränkt, in denen ein ständiger Wasseraustausch durch versickerndes Niederschlagswasser erfolgt (Zone des aktiven Wasseraustausches). Darunter ist eine zunehmende Versalzung des Grundwassers zu beobachten (Zone des verzögerten Wasseraustausches). In größeren Tiefen schließt sich ein Bereich mit weitgehend stagnierendem Grundwasser an. Der enge Zusammenhang zwischen Süßwasservorkommen und aktivem Wasseraustausch macht die Grundwasserdynamik zu einem zentralen Kriterium bei der Bewertung der Nutzbarkeit der Grundwasserleiter sowie auch bei der Abgrenzung von Grundwasserkörpern. Die Tiefenlage der versalzten Wässer, dass heißt, der Tiefgang des aktiven Wasseraustausches, wird wesentlich durch die hydraulischen Eigenschaften der Gesteinsschichten und das Potenzial der durchflossenen Süßwasserkörper gesteuert. Sie variiert demzufolge sehr stark. In großflächigen Vorflutbereichen ( z.B. Elbe-, Weser-, und Allerniederung), in denen der hydrostatische Druck infolge des Übertrittes großer Grundwassermengen in die Vorfluter abrupt abgebaut wird, können großräumige Druckgefälle auftreten, die ein Aufdringen von tiefen versalzten Wässern bis in den oberflächennahen Grundwasserbereich bewirken ( Binnenländische Versalzung ). Die Versalzungsbereiche im Tiefengrundwasser sind oft an die in den älteren Untergrund eingeschnittenen quartären Schmelzwasserrinnen gebunden. Die Tiefenlage der Versalzung liegt dort in einem Niveau, in dem außerhalb der Rinnen keine Grundwasserleiter mehr ausgebildet sind. Im Binnenland sind ferner rund 400 km2 als Grundwasserversalzungsbereiche einzustufen, die durch Ablaugungsvorgänge an hoch liegenden Salzstöcken verursacht sind ( Salzstockablaugung, Subrosion, vgl. Salzstrukturen Norddeutschlands 1 : 500 000, © BGR, 2008). An der Nordseeküste ist als Folge des allgemeinen Meeresspiegelanstieges nach der letzten Eiszeit auf breiter Front Meerwasser in die binnenländischen Grundwasserleiter eingedrungen ( Küstenversalzung ), wobei das in ihnen befindliche Süßwasser verdrängt wurde. Betroffen von dieser Art der Grundwasserversalzung ist ein bis zu 20 km breiter, insgesamt 2500 km2 großer Küstenstreifen, der somit für die Grundwassernutzung weitgehend ausfällt. Nur auf den Küsteninseln haben sich unter den Dünengebieten durch versickernde Niederschläge Süßwasserlinsen gebildet, die in begrenztem Umfang eine Trinkwasserförderung erlauben. Insgesamt sind in Niedersachsen Gebiete mit einer Gesamtfläche von rd. 6500 km2 von Grundwasserversalzungen betroffen, die dort eine Grundwassernutzung erschweren oder unmöglich machen. Zur Abgrenzung der Gebiete mit versalztem Grundwasser wurden die Ergebnisse von Wasseranalysen, geoelektrischen Sondierungen und Aufschlussbohrungen mit geophysikalischen Bohrlochmessungen ausgewertet. Ein Wasser wird als versalzt bezeichnet, wenn sein Chloridgehalt 250 mg/l übersteigt, was in etwa der menschlichen Geschmacksgrenze entspricht. In der Karte wird im Lockergestein unterschieden, ob der gesamte Grundwasserkörper versalzt ist oder ob Salzwasser nur in einem Teil des Grundwassers angetroffen wurde. Im Festgestein werden nur oberflächennahe Versalzungen, auch im Bereich von Salzhalden, dargestellt.

  • Categories  

    Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat Juli im 30-jährigen Zeitraum 1971-2000. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.

  • Categories  

    Die Karte der ursprünglichen Moorverbreitung von Niedersachsen zeigt die maximale Ausdehnung der Moore im niedersächsischen Flachland. Das Kartenwerk stellt die Verbreitung von Niedermooren, Kleinsthochmooren und Hochmooren auf der Basis historischer Karten dar. Die Ausweisung der Moore in der Karte der ursprünglichen Moorverbreitung erfolgte in erheblichem Maße nach der Vegetation, d.h. geobotanisch oder auch teilweise nach Flurnamen und entspricht nicht der geologischen Definition von Mooren. Für die Karte der ursprünglichen Moorverbreitung wurde die Vegetation ausgewertet, die auf historischen Karten seit dem 18. Jahrhundert dargestellt ist, unabhängig von der Torfmächtigkeit. Im Unterschied dazu werden in anderen geologischen Karten Moore erst mit einer Torfmächtigkeit von mindestens 0,3 m dargestellt. Allein aufgrund der unterschiedlichen Definitionen des Moor-Begriffes ist die Moorfläche in der Karte der ursprünglichen Moorverbreitung daher größer als in den anderen geologischen Kartenwerken des LBEG.

  • Categories  

    Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat Juni im 30-jährigen Zeitraum 1961-1990. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.