Topic
 

geoscientificInformation

465 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 465
  • Categories  

    Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Calcium im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Calcium umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Calcium-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Für Calcium im Grundwasser gibt es aktuell keine Grenz-, Prüf- oder Richtwerte, weil Calcium weder ökotoxikologisch noch gesundheitlich als bedenklich betrachtet wird. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.

  • Categories  

    Die Karte zeigt die Grundwasserleitertypen der oberflächennahen Gesteine im Maßstab 1:500 000. Die Gesteinseinheiten der Geologischen Übersichtskarte sind in drei Klassen eingeteilt worden, die die wesentlichen Leitereigenschaften beschreiben: Porengrundwasserleiter, Kluftgrundwasserleiter und Grundwassergeringleiter. - Porengrundwasserleiter Diese nicht verfestigten Sedimentgesteine bestehen überwiegend aus den gröberen Kornkomponenten Kies und Sand und weisen ein zusammenhängendes Hohlraumvolumen auf, das je nach konkreter Zusammensetzung zwischen 10 und 35 % des Gesteinsvolumens beträgt. Das Grundwasser kann sich in diesen Gesteinen gut bewegen, ist relativ gleichmäßig verteilt und bildet eine deutlich ausgeprägte Grundwasseroberfläche aus, die durch Bohrungen gut erschlossen werden kann. - Grundwassergeringleiter Gesteine mit sehr geringen effektiven Hohlraumanteilen und dichten Gesteinsmassen können Grundwasser nur in geringem Maße speichern oder weiterleiten. Als solche Grundwassergeringleiter wirken die feinkörnigen Locker- und Festgesteine (tonig, schluffig), aber auch die kaum geklüfteten dichten Vulkanite und Magmatite. Die tonigen Gesteine weisen zwar eine hohe primäre Porosität von über 30% auf, diese steht aber wegen der in ihnen wirkenden kapillaren Kräfte für die Grundwasserbewegung nicht zur Verfügung. - Kluftgrundwasserleiter Diese verfestigten kompakten Gesteine, die überwiegend durch Diagenese von Sedimenten entstanden sind, sind nachträglich durch tektonische Beanspruchung in unterschiedlichem Maße geklüftet und gestört worden. Dieses sekundäre Hohlraumvolumen nimmt nur einen geringen Teil (wenige %) des gesamten Gesteinsvolumens ein, kann aber eine relativ schnelle Bewegung des Grundwassers begünstigen. Das primäre Hohlraumvolumen ist in diesen Gesteinen durch die Diageneseprozesse erheblich reduziert worden. Die hier vorliegende Karte entstand durch eine Umattributierung der Inhalte der "Geologischen Übersichtskarte von Niedersachsen 1 : 500 000" und berücksichtigt somit in der Regel nur einen Tiefenbereich von ca. 2 m unter Geländeoberkante. Informationen über die Eigenschaften tieferliegender Gesteinsschichten sind aus dieser Karte nicht zu entnehmen.

  • Categories  

    Die Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Grundwasserbeschaffenheit: Eisengehalt zeigt die Auswertung einer repräsentativen Auswahl von Eisenkonzentrationen aus der Labordatenbank des LBEG. Die über einen Zeitraum von 1967 bis 2000 erhobenen Daten wurden zweifach gemittelt. Bei Grundwasser-Messstellen mit Mehrfachanalysen wurden Mittelwerte der jeweils vorliegenden Untersuchungsergebnisse gebildet. Zusätzlich wurden die Werte aller Probenahmestellen in einem Radius von 2000 m einer weiteren Mittelwertbildung unterzogen. Die Einteilung der Klassen erfolgt unter Berücksichtigung des Grenzwertes der Trinkwasserverordnung (TVO) von 0,2 mg/l. Erhöhte Konzentrationen, die eindeutig auf punktförmige anthropogene Einträge (z.B. Altdeponien) zurückzuführen sind, werden im Rahmen dieser Übersichtskarte nicht wiedergegeben. Die Eisengehalte sind in Tiefenstufen ohne Bezug zur lokalen hydrogeologischen Situation dargestellt. Die Stabdiagramme im rechts gezeigten Beispiel spiegeln Ergebnisse für die Tiefenstufen bis 20 Meter, über 20 bis 50 Meter, über 50 bis 100 Meter und über 100 bis 200 Meter wieder. Ein Vergleich von Werten ist daher ohne Berücksichtigung der jeweiligen hydrogeologischen Situation (z.B. hydrogeologischer Stockwerksbau) ebenso wie die Heranziehung der Daten für Detailuntersuchungen nicht zulässig. Die Konzentration von Eisen im Grundwasser wird stark durch den pH-Wert und die Redoxverhältnisse beeinflusst. Die höchsten Eisengehalte Niedersachsens werden in saurem und/oder stark reduziertem Wasser erreicht. Andererseits bewirken hohe Konzentrationen von Karbonat- und Sulfid-Ionen die Ausfällung von Siderit bzw. Eisensulfiden und damit eine Begrenzung der Löslichkeit von Eisen. Bei hohen Konzentrationen von gelöstem organischen Kohlenstoff sind zudem große Anteile des Eisens an Organokomplexe gebunden. Generell sind die Eisengehalte in den Festgesteinsaquiferen des niedersächsischen Berglandes deutlich niedriger als in quartären Lockergesteinen. In mesozoischen Kalksteinen finden sich die niedrigsten Eisenkonzentrationen von 0,01 bis maximal 0,1 mg/l. Höhere Werte werden in mesozoischem Sandstein beobachtet. In den paläozoischen Gesteinen des Harzes gibt es Werte im Bereich von 0,1 – 0,5 mg/l. Das sauerstoffhaltige Grundwasser im nördlichen Niedersachsen (z.B. Lüneburger Heide) zeigt Eisenkonzentrationen, die im Bereich von 0,1 – 1 mg/l liegen. In seltenen Fällen werden bis zu 2 mg/l erreicht. In den Niederungsgebieten im nördlichen Niedersachsen wird der Grenzwert der TVO von 0,2 mg/l häufig überschritten. Eisenkonzentrationen von 2 – 10 mg/l sind im aufsteigenden Grundwasser mit längeren Fließwegen oft zu beobachten. Ebenfalls sehr hohe Eisengehalte zwischen 10 und 40 mg/l finden sich im Grundwasser, das durch Moore beeinflusst wird (z.B. Vehnemoor südwestlich von Oldenburg und Teufelsmoor nördlich von Bremen). Dagegen sind eisenhaltige Grundwässer im Norden von Hannover (Isernhagen, Langenhagen) mit Konzentrationen bis zu 40 mg/l wahrscheinlich auf die Oxidation von Pyrit aus Unterkreide-Tonstein zurück zu führen.

  • Categories  

    Hydrogencarbonat-Hintergrundwerte im Grundwasser von Niedersachsen 1 : 500.000 Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Hydrogencarbonat im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Hydrogencarbonat umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Hydrogencarbonat-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Für Hydrogencarbonat im Grundwasser gibt es aktuell keine Grenz-, Prüf- oder Richtwerte, weil Hydrogencarbonat weder ökotoxikologisch noch gesundheitlich als bedenklich betrachtet wird. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.

  • Categories  

    Die Karte zeigt die modellierte mittlere jährliche Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 im hydrologischen Sommerhalbjahr (Mai-Okt.) in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.

  • Categories  

    Übersichtskarte zur räumlichen Verteilung der gelösten Eisen-Konzentrationen im Grundwasser Niedersachsens. Die Karte zeigt die flächenhafte Auswertung von 1180 Grundwasseranalysen aus Tiefen ab 50 m unterhalb der Geländeoberfläche. Die farblich abgestufte Übersichtskarte stellt ausschließlich die räumliche Verteilung der gemessenen Eisen-Konzentrationen dar und berücksichtigt keine Einflüsse der geologischen Strukturen und Eigenschaften des Untergrundes. Zur Erstellung der Karte wurde das Interpolationsverfahren der inversen Distanzwichtung genutzt.

  • Categories  

    Die Karte zeigt die modellierte Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000 im hydrologischen Sommerhalbjahr (Mai-Okt.) in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.

  • Categories  

    Seit langem ist bekannt, dass sich Böden mehr oder weniger schnell verändern. Manche dieser Veränderungen haben natürliche Ursachen. Andere wiederum sind auf Bodenbelastungen zurückzuführen, die der Mensch direkt oder indirekt verursacht. Hierzu gehören zum Beispiel die Stoffeinträge über Niederschlag und Staub (Säuren, Nährstoffe, Schwermetalle, Radionukleide, organische Schadstoffe usw.). Aber auch der Land- oder Forstwirt verändert die Böden seit eh und je durch Kultivierung und Nutzung. Die weitaus meisten dieser Prozesse laufen sehr langsam und für die menschlichen Sinne nur schwer wahrnehmbar ab. Um mögliche Veränderungen zu dokumentieren, führt das LBEG das niedersächsische Boden-Dauerbeobachtungsprogramm durch. Hierzu wurde in Kooperation mit anderen Landesdienststellen ein Netz von insgesamt 90 so genannten Boden-Dauerbeobachtungsflächen (BDF) aufgebaut. Siebzig entfallen auf ortsüblich landwirtschaftlich (BDF-L) genutzte und zwanzig auf forstlich genutzte (BDF-F) Standorte. Die Auswahl von repräsentativen BDF erfolgte anhand geowissenschaftlicher Kriterien wie Boden- und Gesteinsverhältnisse, Klima und Morphologie. Darüber hinaus berücksichtigte das LBEG typische Bodennutzungen wie Land- und Forstwirtschaft oder Naturschutzflächen sowie Belastungsfaktoren (Immissionen, nutzungsbedingte Belastungen etc.). Knapp die Hälfte der BDF (43) wurden stellvertretend für bestimmte Bodenbelastungssituationen ausgewählt, beispielsweise Siedlungsgebiete, Immissionsgebiete, Auengebiete mit belasteten Flusssedimenten sowie erosionsgefährdete Gebiete. Die übrigen 47 BDF geben die Vielfalt der niedersächsischen Böden unter ortsüblicher Bewirtschaftung wieder. Sie dienen auch als Referenz für Flächen mit spezifischer Belastung. Um Aufschluss über die Ursachen und Auswirkungen möglicher Bodenveränderungen zu erhalten, ermittelt das LBEG auf allen 70 landwirtschaftlich genutzten BDF zusätzlich auch den Stoffeintrag über Dünger und Pflanzenbehandlungsmittel sowie den Stoffaustrag mit dem abgefahrenen Erntegut. Der Landwirt protokolliert alle seine Bearbeitungsmaßnahmen. Ziel ist es, auf Basis dieser repräsentativ ausgewählten Messflächen mögliche Bodenveränderungen aufzudecken, Ursache und Auswirkungen zu bewerten und zu prognostizieren. Gelingt dies, steht den Handelnden in Politik, Verwaltung und Bodennutzung rechtzeitig eine gesicherte Datengrundlage für ihre Entscheidungsprozesse zur Verfügung. In anderen Bundesländern gibt es ähnliche Programme, deren inhaltlicher Umfang unter den durchführenden Institutionen abgestimmt ist. Innerhalb Europas ist eine entsprechende Rahmenrichtlinie in Vorbereitung.

  • Categories  

    Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat Dezember im 30-jährigen Zeitraum 1961-1990. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.

  • Categories  

    Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat Mai im 30-jährigen Zeitraum 1981-2010. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.