Boden
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
Die BÜK50 enthält eine bodenlandschaftliche Zuordnung der jeweiligen Fläche, den Bodentyp, Angaben zum charakteristischen Bodenprofil und zu den Horizonten, aus denen sich das Profil zusammensetzt.
-
Mit dem Aufbau des Fachinformationssystems (FIS) Bodenkunde ist beabsichtigt, alle für Bodennutzung und Bodenschutz auf Bundesebene relevanten Informationen vorzuhalten. Mit diesem System soll das Abrufen und die Interpretation von Daten nach bedarfsorientierten oder wissenschaftlichen Kriterien ermöglicht werden. Darüber hinaus werden Methoden und Kriterien zur Erkennung und Bewertung von Bodeninformationen entwickelt und bereitgehalten. Die Struktur des FISBo BGR wurde mit dem in der BIS-Steuerungsgruppe der Staatlichen Geologischen Dienste und der BGR vereinbarten Konzepten abgestimmt. Zahlreiche Entwicklungen werden zusammen mit den Mitgliedern der Ad-hoc-AG Boden betrieben. Das FISBo BGR erfüllt deshalb alle Anforderungen für die Zusammenarbeit mit den 16 Bundesländern Deutschlands. Der Aufbau des FISBo BGR und die dazugehörigen Entwicklungsarbeiten sind in zahlreichen Publikationen dokumentiert. Es besteht aus den folgenden Komponenten: * Labor- und Profildatenbank * Flächendatenbank * Methodenbank Der Bodenkundliche Kartenserver dient der Dokumentation des Arbeitsstandes bei der Bearbeitung bodenkundlicher Karten in der BGR sowie der interaktiven Visualisierung von Karten und den in Datenbanken gespeicherten Attributinformationen. Die Visualisierung der Daten erfolgt auf der Basis des UMN Mapservers mit einer Oberfläche, die einen unkomplizierten Datenzugang ermöglichen soll.
-
Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2021-2050 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
-
Das LBEG führte vom Juli 2015 bis Mai 2017 eine systematische Kampagne zur Untersuchung von Bodenbelastungen im Umfeld von Erdgasförderplätzen durch. Insgesamt wurden 200 der 455 aktiven Erdgasförderplätze in Niedersachsen beprobt und auf mögliche Belastungen durch Schwermetalle, unterschiedliche Kohlenwasserstoffe, Dioxine und Furane untersucht. Außerdem wurde an ausgewählten Plätzen die spezifische Radioaktivität gemessen. Das Programm berücksichtigte alle Landkreise, in denen sich Erdgasförderplätze befinden. Neben dem Landkreis Rotenburg/Wümme waren das Standorte in den Landkreisen Aurich, Celle, Cloppenburg, Diepholz, Emsland, Grafschaft Bentheim, Heidekreis, Leer, Nienburg, Oldenburg, Vechta und Verden sowie in der Stadt Emden und der Region Hannover. Die Förderplätze wurden so ausgewählt, dass in jedem Landkreis ein ungefähr gleicher Anteil der insgesamt vorhandenen Förderplätze untersucht wurde (ca. 40%). Alle Untersuchungen erfolgten nach den rechtlichen Vorgaben der Bundes-Bodenschutzverordnung. Die Ergebnisse stellte das LBEG am 15. Mai 2017 im Rahmen einer Pressekonferenz vor. Der Endbericht liegt zum Download vor. Auf Basis der erarbeiteten Ergebnisse wurde u. a. vorgeschlagen, an allen Erdgasförderplätzen, die in Oberflächengewässer entwässern (insbesondere den Plätzen, die im Rahmen des o. g. Projektes (AG Hg I) nicht untersucht wurden), weitere Sedimentuntersuchungen durchzuführen. Die Sedimentuntersuchungen sind erforderlich, weil im Rahmen der durchgeführten Untersuchungen (AG Hg I) auffallend häufig Überschreitungen der Schwellenwerte (OW) in Sedimenten entwässerungsrelevanter Oberflächengewässer festgestellt wurden. Im Zuge der weiterführenden Sedimentuntersuchungen wurden im Sommer 2018 im Umfeld von insgesamt 42 Erdgasförderplätzen weitere orientierende Untersuchungen durchgeführt. Die Probenahme wurde an den Einleitstellen sowie im An- und Abstrom der Einleitstellen bzw. der Erdgasförderplätze sowohl in trockenen Gräben als auch in Oberflächengewässern durchgeführt. Die Ergebnisse wurden im November 2018 vorgelegt und im Endbericht zu den weiterführenden Sedimentuntersuchungen zusammengefasst (http://www.lbeg.niedersachsen.de/startseite/boden_grundwasser/schadstoffmessungen/untersuchungen_im_umfeld_von_erdgasfoerderplaetzen/untersuchungen-im-umfeld-von-erdgasfoerderplaetzen-135742.html).
-
Die Karte zeigt die Veränderung der der Böden als Ausgleichkörper im Wasserhaushalt 2071-2100 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundsätzlich sind alle unversiegelten Böden ein Ausgleichskörper im Wasserhaushalt (AKWH). Sie nehmen Wasser auf und geben es zeitverzögert wieder ab. Zudem wird Wasser durch sie in tiefere Schichten weitergeleitet. Die Böden wirken damit als Zwischenspeicher im Landschaftswasserhaushalt. Die Methode fasst all die Komponenten, z.B die Wasserleitfähigkeit und die Wasserspeicherfähigkeit in ein Bewertungsschema zur Beurteilung des Rückhaltes von Wasser im Boden zusammen. Zentral ist die Bewertung der Retentionsleistung und der Infiltrationsleistung. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
-
Die Karte zeigt den mittleren potenziellen Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2031-2060 unter dem „Klimaschutz“-Szenario (RCP2.6). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Klimaschutz“-Szenario (RCP2.6) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches deutliche Anstrengungen beim Klimaschutz und niedrigen Emissionen bedeutet. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
-
Ausweisung der potenziellen Erosionsgefährdung durch Wasser gemäß § 16, Anlage 3 der GAP-Konditionalitäten-Verordnung auf Rasterebene im 10 m Raster für das Bundesland Hamburg. Die Berechnung der potenziellen Wassererosionsgefährdung erfolgt in Anlehnung an DIN 19708 (Bodenbeschaffenheit – Ermittlung der Erosionsgefährdung von Böden durch Wasser mit Hilfe der ABAG, 2022) auf Rasterebene im 10 m Raster durch Multiplikation von - Bodenerodierbarkeitsfaktor (K-Faktor) nach Gleichung 3 bis Gleichung 10. Bodenart, Humusgehalt und Skelettanteil des Oberbodens stammen aus der Bodenübersichtskarte 1:200.000 (BUEK200), - Regenfaktor (R-Faktor) gem. Nummer 4.2 aus der vom DWD bereitgestellten Karte der R-Faktoren für das Zentraljahr 2021, - Hangneigungsfaktor (S-Faktor) gemäß Anhang D auf Basis des DGM10 (10 m) sowie einem pauschalen Hangneigungsfaktors 2 für eine Standardhanglänge von ca. 100 m. Für jede Rasterzelle wird eine potenzielle Wassererosionsgefährdung ermittelt.
-
Die kohlenstoffreichen Böden in Niedersachsen 1 : 5 000 nach Bodenschätzung, „BS Standortinformation Moor und Torf“, ist das Ergebnis einer Methodenanwendung zur standardisierten Auswertung der Bodenschätzung (1:5.000), mit der Moore und weitere Böden mit Torfen aus den Daten selektiert und hinsichtlich ihrer Standortinformation ausgewertet und in Kategorien dargestellt werden. Es ergibt sich eine hochauflösende Darstellung der Verbreitung von Standortklassen wie Moorgleyen und Mooren sowie Böden mit mineralisch überdeckten Torfen. Sofern kulturtechnische Maßnahmen durch die Bodenschätzung erfasst wurden, werden auch kultivierte Moore (Sanddeckkultur, Sandmischkulturen, Baggerkuhlungen) abgebildet. Weiterführende Informationen zur Ableitung der Standortklasse finden sich im GeoBericht 33. Die Ausschärfung der Auswertung hinsichtlich kultivierter Moore, insbesondere Moor-Treposole ist in Anlehnung an GeoBericht 47 erfolgt. Die Bodenschätzung geht auf das „Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens (BodSchätzG)“ vom 16.10.1934 zurück und wird bis heute in nahezu unveränderter Form (novellierte Fassung vom 01.01.2008) durchgeführt. Nach Abschluss der Erstinventur in den 50er Jahren wird die Bodenschätzung seither fortlaufend durch Nachschätzungen aktualisiert. Ein großer Teil der heute vorliegenden Bodenschätzungsinformationen ist daher nicht aktuell. Dies ist insbesondere für Moorböden, die bei Entwässerung einen Torfverlust durch Mineralisierung aufweisen oder bei agrarkulturellen Eingriffen wie den Tiefumbruch von Bedeutung. Das hier dargestellte Auswertungsergebnis bezieht sich auf den Datenbestand der Bodenschätzung von 2018. Sobald dem LBEG ein neuer Datenbestand zugeführt und in das NIBIS® integriert wird, kann die automatisierte Auswertung auf Grundlage des neuen Datensatzes erneut durchgeführt und die Darstellung aktualisiert werden.
-
Die Karte zeigt die Veränderung der der Böden als Ausgleichkörper im Wasserhaushalt 2071-2100 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundsätzlich sind alle unversiegelten Böden ein Ausgleichskörper im Wasserhaushalt (AKWH). Sie nehmen Wasser auf und geben es zeitverzögert wieder ab. Zudem wird Wasser durch sie in tiefere Schichten weitergeleitet. Die Böden wirken damit als Zwischenspeicher im Landschaftswasserhaushalt. Die Methode fasst all die Komponenten, z.B die Wasserleitfähigkeit und die Wasserspeicherfähigkeit in ein Bewertungsschema zur Beurteilung des Rückhaltes von Wasser im Boden zusammen. Zentral ist die Bewertung der Retentionsleistung und der Infiltrationsleistung. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
-
Die Karte zeigt den mittleren Bodenwasservorrat (in %nFK) in der Vegetationsperiode (April – September) für den 30-jährigen Zeitraum 1971-2000 berechnet mit dem Bodenwasserhaushaltsmodell BOWAB (für 0 – 60 cm). Für die Pflanzen ist die Wasserverfügbarkeit im Boden ein zentrales Element für das Wachstum. Diese Verfügbarkeit von Bodenwasser hängt von der Bodenart und der Menge des im Boden gespeicherten Wassers ab. Wobei letztere maßgeblich vom Niederschlag und der Temperatur (bzw. Verdunstung) beeinflusst wird. Das für Pflanzen nutzbare Bodenwasser wird als Prozent der nutzbaren Feldkapazität (%nFK) angegeben. Ein Wert von 100% nFK oder mehr bedeutet die Speicherfähigkeit des Bodens für pflanzenverfügbares Wasser erreicht ist. Ab etwa 40 % nFK wird eine Beregnung von Ackerkulturen empfohlen, um einen optimalen Ertrag erzielen zu können.